CrewAI 快速入门
类别: CrewAI Agent 标签: Quickstart Agent CrewAI LLM Ollama目录
CrewAI
安装
pip install 'crewai[tools]'
CrewAI 使用 Ollama 运行本地 LLM
.env
OPENAI_API_BASE=http://localhost:11434/v1
OPENAI_MODEL_NAME=aya:8b
OPENAI_API_KEY=NULL
agent.py
版本1
每次执行结果都不一样
from dotenv import load_dotenv
load_dotenv()
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI
general_agent = Agent(
role = "数学教授",
goal = """为提问数学问题的学生提供解决方案并给出答案。""",
backstory = """您是一位优秀的数学教授,喜欢以每个人都能理解的方式解决数学问题。""",
allow_delegation = False,
verbose = True
)
task = Task (
description="""3 + 5 = """,
agent = general_agent,
expected_output="一个数字答案。"
)
crew = Crew(
agents=[general_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
print(result)
版本2
稳定地生成结果
from dotenv import load_dotenv
load_dotenv()
from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
model = "aya:8b",
base_url = "http://localhost:11434/v1",
temperature=0 # 稳定地生成结果
)
general_agent = Agent(
role = "数学教授",
goal = """为提问数学问题的学生提供解决方案并给出答案。""",
backstory = """您是一位优秀的数学教授,喜欢以每个人都能理解的方式解决数学问题。""",
allow_delegation = False,
verbose = True,
llm = llm
)
task = Task (
description="""3 + 5 = """,
agent = general_agent,
expected_output="一个数字答案。"
)
crew = Crew(
agents=[general_agent],
tasks=[task],
verbose=2
)
result = crew.kickoff()
print(result)
执行结果
[DEBUG]: == Working Agent: 数学教授
[INFO]: == Starting Task: 3 + 5 =
> Entering new CrewAgentExecutor chain...
I now can give a great answer
Final Answer: 8
> Finished chain.
[DEBUG]: == [数学教授] Task output: 8
8