SiliconFlow AI Infra
类别: AIInfra SiliconFlow 标签: SiliconCloud OpenAI LLM目录
SiliconFlow
模型 & 价格
deepseek-ai/deepseek-v2-chat | ¥1.33/1M tokens |
deepseek-ai/deepseek-llm-67b-chat | ¥1/1M tokens |
alibaba/Qwen2-7B-Instruct | ¥0.35/1M tokens |
alibaba/Qwen1.5-110B-Chat | ¥4.13/1M tokens |
alibaba/Qwen1.5-32B-Chat | ¥1.26/1M tokens |
alibaba/Qwen1.5-14B-Chat | ¥0.7/1M tokens |
alibaba/Qwen1.5-7B-Chat | ¥0.35/1M tokens |
01-ai/Yi-1.5-34B-Chat | ¥1.26/1M tokens |
01-ai/Yi-1.5-9B-Chat | ¥0.42/1M tokens |
01-ai/Yi-1.5-6B-Chat | ¥0.35/1M tokens |
zhipuai/glm4-9B-chat | ¥0.6/1M tokens |
zhipuai/chatglm3-6B | ¥0.35/1M tokens |
meta/llama3-70B-chat | ¥4.13/1M tokens |
meta/llama3-8B-chat | ¥0.42/1M tokens |
mixtralai/Mixtral-8x22B-Instruct-v0.1 | ¥4.13/1M tokens |
mixtralai/Mixtral-8x7B-Instruct-v0.1 | ¥1.26/1M tokens |
mixtralai/Mistral-7B-Instruct-v0.2 | ¥0.35/1M tokens |
google/gemma-7b-it | ¥0.35/1M tokens |
google/gemma-2b-it | ¥0.14/1M tokens |
microsoft/Phi-3-mini-4k-instruct |
OpenAI API
from openai import OpenAI
client = OpenAI(
api_key="sk-xxxxxx",
base_url="https://api.siliconflow.cn/v1"
)
response = client.chat.completions.create(
model='deepseek-ai/deepseek-v2-chat',
messages=[
{'role': 'user', 'content': "你好!"}
]
)
print(response.choices[0].message.content)
流式输出
from openai import OpenAI
client = OpenAI(
api_key="sk-xxxxxx",
base_url="https://api.siliconflow.cn/v1"
)
response = client.chat.completions.create(
model='deepseek-ai/deepseek-v2-chat',
messages=[
{'role': 'user', 'content': "介绍一下你自己吧。"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta.content)
CURL
curl --request POST \
--url https://api.siliconflow.cn/v1/chat/completions \
--header 'Authorization: Bearer sk-xxxxxx' \
--header 'accept: application/json' \
--header 'content-type: application/json' \
--data '{
"model": "deepseek-ai/deepseek-v2-chat",
"messages": [
{
"role": "user",
"content": "你好"
}
],
"stream": false,
"max_tokens": 512,
"temperature": 0.7
}'