大型语言模型驱动的自主代理
类别: Agent LLM 标签: Agent LLM目录
- Application scenarios of AI agents(AI代理的应用场景)
- Intro of AI agent, & AI agent projects summary
- AI Agent Frameworks
- Multi-Agent Systems
- 参考资料
Application scenarios of AI agents(AI代理的应用场景)
AI代理是LLM应用的重要场景,构建代理应用将是2024年的重要技术领域。目前我们主要的智能形式有单AI代理,多AI代理,混合AI代理等三种。
Single AI Agent(单一人工智能代理)
在特定任务场景下完成的工作,比如 GitHub Copilot Chat 下的代理工作区,就是根据用户需求完成特定编程任务的一个例子。基于 LLM 的能力,单个代理可以根据任务执行不同的动作,比如需求分析、项目阅读、代码生成等。它也可以应用于智能家居和自动驾驶。
Multi-AI Agents(多人工智能代理)
这就是AI代理之间相互交互的工作。例如上述Semantic Kernel代理实现就是一个例子。脚本生成的AI代理与执行脚本的AI代理进行交互。多代理应用场景在高度协同的工作中非常有帮助,例如软件行业开发、智能生产、企业管理等。
Hybrid AI Agent(混合人工智能代理)
这就是人机交互,在同一个环境下做决策。比如智慧医疗、智慧城市等专业领域,可以利用混合智能来完成复杂的专业工作。
Intro of AI agent, & AI agent projects summary
Project | Key Features |
---|---|
LangChain | - Python and JavaScript libraries for building LLM-backed apps |
- Modular components for perceiving context, reasoning, chaining, etc. | |
- Reference architectures and templates | |
- Tooling for debugging, testing, deploying chains | |
AutoGen | - Orchestrates LLMs and agents for multi-agent conversations |
- Customizable and conversational agents | |
- Human participation in loops | |
- Toolkit for reasoning, caching, error handling | |
PromptAppGPT | - Low-code prompt-based development |
- Integrations for GPT, DALL-E, and plugins | |
- Online editor, compiler, runner | |
- Auto-generated UI | |
- Built-in agent examples | |
AutoGPT | - Toolkit for building custom AI agents |
- Leverages GPT-3, GPT-4 for agents | |
- Popular open source agent project | |
BabyAGI | - Minimalist Python agent |
- Uses GPT and vector DB | |
- Create, prioritize, execute tasks | |
SuperAGI | - Alternative to AutoGPT |
- Multiple models, vector DBs | |
- GUI and operations console | |
- Performance telemetry | |
- Toolkits and marketplace | |
ShortGPT | - Automates video creation workflows |
- Scripts, prompts, templates | |
- Multilingual voiceover and subtitles | |
- Resource and asset sourcing | |
ChatDev | - Multi-agent “virtual software company” |
- Agents in specialized roles | |
- Workshop model for collaboration | |
MetaGPT | - Mimics software company structure |
- PM, engineer, etc. roles assigned | |
- Agents collaborate on tasks | |
Camel | - Early multi-agent framework |
- Dynamic role assignment | |
- Stages scenarios for collaboration | |
JARVIS | - Task planning with ChatGPT |
- Model selection from Hub | |
- Orchestrates specialist models | |
OpenAGI | - Combines expert and LLM models |
- RLTF for model improvement | |
- Specialized for complex tasks | |
XAgent | - Modular dispatcher, planner, actor |
- Human collaboration abilities | |
- Safety and extensibility |
AI Agent Frameworks
- AutoGPT
- TaskWeaver
- CrewAI
- BabyAGI
- CAMEL
- MetaGPT
- AutoGen
- DSPy
- AutoAgents
- OpenAgents
- Agents
- AgentVerse
- ChatDev
- XAgent
- Qwen-Agent
- Lagent
Multi-Agent Systems
- CrewAI
- AutoGen
- Rivet
- Agency Swarm
- Semantic Kernel
- CAMEL
- AgentVerse
- BotSharp
- AI Agent Team Frameworks