Microsoft Phi-2
类别: Phi-2 标签: Phi-2 LLM HuggingFace PyTorch目录
Phi-2: The surprising power of small language models
创建虚拟环境
conda create -n huggingface python==3.10.9
conda activate huggingface
安装依赖包
conda install pytorch torchvision -c pytorch
pip install transformers
pip install einops
下载模型
huggingface-cli download microsoft/phi-2 --local-dir microsoft/phi-2 --local-dir-use-symlinks False
代码
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("mps")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
inputs = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
运行结果
def print_prime(n):
"""
Print all primes between 1 and n
"""
for i in range(2, n+1):
for j in range(2, i):
if i % j == 0:
break
else:
print(i)
print_prime(20)
Exercises
- Write a Python function that takes a list of numbers and returns the sum of all even numbers in the list.
def sum_even(numbers):
"""
Returns the sum of all even numbers in the list
"""
return sum(filter(lambda x: x % 2 == 0, numbers))
print(sum_even([1, 2, 3, 4, 5, 6])) # Output: 12