Gradio Chatbot
类别: Gradio Chatbot 标签: Gradio Chatbot DashScope LangChain ChatTongyi Text2SQL目录
Gradio Chatbot
DashScope
import os
import pandas as pd
import gradio as gr
from http import HTTPStatus
from dashscope import Generation
from dashscope.api_entities.dashscope_response import Role
from typing import List, Optional, Tuple, Dict, Generator
from urllib.error import HTTPError
DEFAULT_SYSTEM = '您是一个有用的助手。'
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
def clear_session() -> History:
return '', []
def modify_system_session(system: str) -> str:
if system is None or len(system) == 0:
system = DEFAULT_SYSTEM
return system, system, []
def history_to_messages(history: History, system: str) -> Messages:
messages = [{'role': Role.SYSTEM, 'content': system}]
for user, assistant in history:
messages.append({'role': Role.USER, 'content': user})
messages.append({'role': Role.ASSISTANT, 'content': assistant})
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
assert messages[0]['role'] == Role.SYSTEM
system = messages[0]['content']
history = []
for q, r in zip(messages[1::2], messages[2::2]):
history.append([q['content'], r['content']])
return system, history
def model_chat(query: Optional[str], history: Optional[History], system: str) -> Generator[str, History, str]:
query if query else ''
history if history else []
messages = history_to_messages(history, system)
messages.append({'role': Role.USER, 'content': query})
gen = Generation.call(
model = "qwen-turbo", # codeqwen1.5-7b-chat
messages=messages,
result_format='message',
stream=True
)
for response in gen:
if response.status_code == HTTPStatus.OK:
role = response.output.choices[0].message.role
response = response.output.choices[0].message.content
system, history = messages_to_history(messages + [{'role': role, 'content': response}])
yield '', history, system
else:
raise HTTPError('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
response.request_id, response.status_code,
response.code, response.message
))
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=8>DataGPT</center>""")
with gr.Accordion('系统设置', open=False):
with gr.Row():
with gr.Column(scale=3):
system_input = gr.Textbox(value=default_system, lines=1, label='System')
with gr.Column(scale=1):
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)
system_state = gr.Textbox(value=default_system, visible=False)
chatbot = gr.Chatbot(show_label=False, show_copy_button=True)
textbox = gr.Textbox(lines=2, show_label=False)
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
sumbit = gr.Button("🚀 发送")
sumbit.click(model_chat,
inputs=[textbox, chatbot, system_state],
outputs=[textbox, chatbot, system_input],
concurrency_limit = 100)
clear_history.click(fn=clear_session,
inputs=[],
outputs=[textbox, chatbot])
modify_system.click(fn=modify_system_session,
inputs=[system_input],
outputs=[system_state, system_input, chatbot])
demo.queue(api_open=False)
demo.launch(max_threads=30)
LangChain ChatTongyi
import os
import gradio as gr
from typing import List, Optional, Tuple, Dict, Generator
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_community.chat_models.tongyi import ChatTongyi
default_system = '您是一个有用的助手。'
History = List[Tuple[str, str]]
Messages = List[Dict[str, str]]
model = ChatTongyi(model="qwen-turbo", top_p=0.01)
def clear_session() -> History:
return '', []
def modify_system_session(system: str) -> str:
if system is None or len(system) == 0:
system = default_system
return system, system, []
def history_to_messages(history: History, system: str) -> Messages:
messages = [SystemMessage(system)]
for user, assistant in history:
messages.append(HumanMessage(user))
messages.append(AIMessage(assistant))
return messages
def messages_to_history(messages: Messages) -> Tuple[str, History]:
system = messages[0].content
history = []
for q, r in zip(messages[1::2], messages[2::2]):
history.append([q.content, r.content])
return system, history
def model_chat(query: Optional[str], history: Optional[History], system: str) -> Generator[str, History, str]:
query if query else ''
history if history else []
messages = history_to_messages(history, system)
messages.append(HumanMessage(query))
content = ''
gen = model.stream(messages)
for response in gen:
content += response.content
system, history = messages_to_history(messages + [AIMessage(content)])
yield '', history, system
with gr.Blocks() as demo:
gr.Markdown("""<center><font size=8>DataGPT</center>""")
with gr.Accordion('系统设置', open=False):
with gr.Row():
with gr.Column(scale=3):
system_input = gr.Textbox(value=default_system, lines=1, label='System')
with gr.Column(scale=1):
modify_system = gr.Button("🛠️ 设置system并清除历史对话", scale=2)
system_state = gr.Textbox(value=default_system, visible=False)
chatbot = gr.Chatbot(show_label=False, show_copy_button=True)
textbox = gr.Textbox(lines=2, show_label=False)
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
sumbit = gr.Button("🚀 发送")
sumbit.click(model_chat,
inputs=[textbox, chatbot, system_state],
outputs=[textbox, chatbot, system_input],
concurrency_limit = 100)
clear_history.click(fn=clear_session,
inputs=[],
outputs=[textbox, chatbot])
modify_system.click(fn=modify_system_session,
inputs=[system_input],
outputs=[system_state, system_input, chatbot])
demo.queue(api_open=False)
demo.launch(max_threads=30)